Additional ent-Kaurane Diterpenoids from Rubus corchorifolius L. f.

by Xue-Xiang Chen^a)^b)¹), Shuang-De Zhou^c)¹), Yang-Wen Ou^d), Su-Yao Xiao^a), Wang-Huang Lin^b), Yong Cao^{*a}), Min Zhang^b), Li-Chao Zhao^a), and Long-Fang Li^a)

^a) College of Food Science, South China Agricultural University, Guangzhou 510642, P. R. China (phone: + 86-20-85286234; fax: + 86-20-85286234; e-mail: caoyong2181@scau.edu.cn)

^b) Key Laboratory of Phytohormones of Hunan Agricultural University, Changsha 410128, P. R. China
^c) College of Bioscience and Biotechnology, Hunan Agriculture University, Changsha 410128, P. R. China

^d) Pharmacy College, Hunan University of Traditional Chinese Medicine, Changsha 410007, P. R. China

A further chemical investigation of the plant *Rubus corchorifolius* L. f., collected in Hunan Province, afforded three new *ent*-kauranoids 3-5. Their structures were elucidated by various spectroscopic methods.

Introduction. – *Rubus corchorifolius* L. f., also known as raspberry, milk bubble, March bubble *etc.*, is an upright shrub of the genus *Rubus* L. It is distributed in the whole country of China, except for the Northeast, Tibet, Gansu, Qinghai, and Xinjiang provinces [1][2]. It has been used as a Chinese folk medicine to treat diarrhoea, extravasated blood, and alcoholism [3]. Recently, as part of a study on the biologically active constituents from this plant collected in Hunan Province, we have reported two new *ent*-kaurane diterpenoids, *i.e.*, (16*a*)-16,17-dihydroxy-*ent*-kauran-2-one-17- β -Dglucoside (=(16 α)-17-(β -D-glucopyranosyloxy)-16-hydoxykauran-2-one²); **1**) and (3 α ,16 α)-*ent*-kauran-3,16,17,19-tetrol (=(3 β ,4 α ,16 α)-kaurane-3,16,17,18-tetrol²); **2**), respectively (*Fig. 1*) [4]. Further investigation on this plant resulted in the isolation of three new *ent*-kaurane diterpenoids (*Fig. 2*). The isolation and structural elucidation of the three compounds are reported in this article.

Fig. 1. ent-Kaurane diterpenoids 1 and 2 isolated from Rubus corchorifolius L. f. [4]

Results and Discussion. – Compound **3**, obtained as colorless granular crystals and giving quasimolecular-ion peaks at m/z 354 ($[M + H_2O]^+$) and 318 ($[M - H_2O]^+$) in the

¹) These two authors contributed equally to this work.

²⁾ Name according to Chem. Abstr. where "kaurane" is used for "ent-kaurane" of IUPAC.

^{© 2010} Verlag Helvetica Chimica Acta AG, Zürich

Fig. 2. Three new compounds isolated from Rubus corchorifolius L. f.

atmospheric-pressure chemical-ionization (APCI) MS, was deduced to have a molecular mass of 336 amu. The ¹H-NMR spectrum (*Table*) indicated the presence of two O-bearing CH₂ groups (δ (H) 3.60 and 3.70 (2d, J = 11, each 1 H); δ (H) 3.37 and 3.49 (2d, J = 11, each 1 H)), two CH₂ groups attached to a C=O group (δ (H) 2.05 (d, J = 13, 1 H) and 2.47 (dd, J = 13, 2.0, 1 H); δ (H) 2.13 (d, J = 14, 1 H) and 2.53 (dd, J = 14, 1 H) 14, 2.0, 1 H)), and two s Me groups (δ (H) 1.04 and 1.11). In the ¹³C-NMR (DEPT) spectrum (Table), one C=O group four quaternary C-atoms including an O-bearing one, three CH groups, ten CH₂ groups including two O-bearing ones, and two Me groups were observed. The above spectral evidence revealed the molecular formula $C_{20}H_{32}O_4$; moreover, the ¹³C-NMR spectrum was similar to those of compounds 1 and 2 which had been isolated from the same plant before. Therefore, the structure of compound **3** was that of an *ent*-kaurane-type diterpenoid [5-7]. The ¹H- and ¹³C-NMR signals were assigned based on the ¹H,¹H-COSY, HSQC, HMBC, and NOESY experiments. In the HMBC spectrum, the following long-range correlations were observed (Fig. 3): $CH_2(17)/C(13)$, C(15), and C(16), $H_a - C(1)/C(2)$, C(3), C(5), C(10), and C(20), $H_a - C(3)/C(2)$, C(4), C(5), C(18), and C(19), Me(18)/C(3), C(4), C(5), and C(19), and CH₂(19)/C(3), C(4), C(5), and C(18). The NOESY plot revealed the NOEs $CH_2(19)/Me(20)$, $CH_2(19)/Me(18)$, $CH_2(19)/H_a - C(3)$, as well as Me(18)/ $H_{\beta}-C(3)$ and $Me(18)/H_{\beta}-C(5)$ (Fig. 4). These findings indicated that the C=O C group should be placed at C(2) and three OH groups at C(16) (in α position), C(17), C(19), respectively. Thus, the structure of compound **3** was determined as $(4\alpha, 16\alpha)$ -16,17,19-trihydroxy-ent-kaur-2-one as shown in Fig. 2.

Fig. 3. Key correlations in the HMBC spectrum of compound 3

Compound **4**, obtained as colorless crystals and giving *quasi*molecular-ion peaks at m/z 356 ($[M + H_2O]^+$) and 320 ($[M - H_2O]^+$) in the APCI-MS, was deduced to have a molecular mass of 338 amu. The ¹H-NMR spectrum (*Table*) showed two O-bearing CH groups (δ (H) 3.66–3.75 (*m*, overlap, 1 H); δ (H) 3.52 (*d*, J = 9, 1 H)), an O-bearing CH₂ group (δ (H) 3.67–3.73 (*m*, overlap, 1 H) and 3.59 (*d*, J = 11, 1 H)), three *s* Me

	Table. NMR Data oj	^c Compounds	3-5 and of the Kr	юмп Сотр	pounds 1 and 2 . δ in ppm, J i	n Hz.		
	3 ^a)		4 ^a)		5 ^a)		1 ^b) ^c)	2 ^b)
	δ(H)	δ(C)	δ(H)	δ(C)	δ(H)	δ(C)	$\delta(C)$	$\delta(C)$
$CH_2(1)$	2.05 $(d, J = 13, H_{\beta}),$ 2.47 $(dd, J = 13, 2.0, H_{a})$	57.0 (t)	1.48–1.56, 1.64–1.72 (2m)	47.9 (t)	2.20 $(dd, J = 13, 2.0, H_a)$, 2.86 $(d, J = 13, H_{\beta})$	51.4 (t)	55.1 (t)	38.4 (t)
C(2) or H-C(2)		214.9(s)	3.66 - 3.75(m)	70.4 (t)		216.9(s)	211.5(s)	26.0(t)
$CH_2(3)$ or $H-C(3)$	2.13 $(d, J = 14, H_{\beta})$, 2.53 $(dd, J = 14, 2.0, H_{\gamma})$	50.9(t)	3.52 (d, J=9)	(p) 6.8L	$2.35 (d, J = 13, H_{\beta}),$ $2.02 - 2.10 (m, 1 H_{z})$	57.2 (t)	55.9 (t)	(p) 9.89
C(4)		44.9(s)		38.7 (s)		39.6 (s)	38.6(s)	42.9 (s)
H-C(5)	$1.55 - 1.62 \ (m, H_{\beta})$	56.6(d)	$1.14 - 1.20 \ (m)$	51.6(d)	$2.05-2.12 \ (m, H_{\beta})$	48.3 (d)	54.3(d)	(48.9 (d))
$CH_2(6)$	$1.42 - 1.58 \ (m, H_a),$	22.0(t)	1.41 - 1.51 (m)	22.6 (t)	1.40 - 1.55 (m, H _a),	21.7(t)	20.6(t)	20.2(t)
	$1.75 - 1.81 \ (m, H_{\beta})$				$1.63 - 1.73 \ (m, H_{eta})$			
$CH_2(7)$	$1.51 - 1.62 \ (m, H_{eta}),$	42.9 (t)	1.44 - 1.53,	42.3 (<i>t</i>)	$1.34 - 1.44 \ (m, H_{\beta}),$	37.5 (t)	36.5 (t)	42.6 (<i>t</i>)
	$1.65 - 1.71 \ (m, H_a)$		1.57 - 1.63 (2m)		$1.93 - 2.03 \ (m, H_a)$			
C(8)		45.8(s)		45.7 (s)		50.9(s)	44.1(s)	44.3(s)
H-C(9) or $C(9)$	1.32 $(d, J = 8, H_{\beta})$	57.1(d)	$1.10 - 1.16 \ (m)$	58.4(d)		78.5 (s)	55.1 (d)	56.6(d)
C(10)		45.3 (s)		40.5(s)		50.3(s)	44.3 (s)	39.1 (s)
$CH_{2}(11)$	$1.46 - 1.56 \ (m, H_a),$	19.6(t)	1.53 - 1.70 (m)	20.0(t)	$1.18 - 1.30 \ (m, H_{\beta}),$	30.3(t)	18.2(t)	18.2 (t)
	$1.58 - 1.67 \ (m, H_{\beta})$				$1.78 - 1.92 \ (m, H_a)$			
$CH_{2}(12)$	$1.47 - 1.59 \ (m, H_a),$	26.9 (t)	1.49 - 1.59,	27.1 (t)	$1.47 - 1.62 \ (m, H_a),$	28.6 (t)	25.9 (t)	25.4 (t)
	$1.60 - 1.69 \ (m, H_{eta})$		1.62 - 1.69 (2m)		$1.69 - 1.82 \ (m, H_{eta})$			
H-C(13)	$2.04 \text{ (br. } s, H_a)$	46.2(d)	2.02 (br. s)	46.3(d)	$2.00-2.07~(m,{ m H}_a)$	45.1 (d)	45.0(d)	44.9(d)
$CH_2(14)$	$1.59 - 1.67 \ (m, H_{\beta}),$	37.7 (t)	1.57 - 1.64,	37.7 (t)	$1.73 - 1.84 \ (m, H_{\beta}),$	39.0(t)	41.2 (t)	36.9(t)
	1.86 $(d, J = 11.5, H_a)$		1.86 $(d, J = 11.5)$		$2.04 - 2.13 \ (m, H_a)$			
$CH_{2}(15)$	1.43 $(d, J = 15)$,	53.5 (t)	1.35 - 1.42,	53.7 (t)	$1.08 - 1.15 (m, H_{\beta}),$	47.9 (t)	51.9 (t)	53.0 (t)
	$1.53 - 1.60 \ (m)$		1.48 - 1.54 (2m)		$2.26 \ (dd, J = 15, 2.0, H_a)$			
C(16)		82.7 (s)		82.7 (s)		82.9 (s)	79.6 (s)	80.7 (s)
CH ₂ (17)	3.60, 3.70 (2d, J = 11)	66.8 (<i>t</i>)	3.59 (d, J = 11), 3.67 - 3.73 (m.)	(1) 6.99	3.58, 3.69 (2d, J = 11)	66.7 (t)	73.9 (t)	65.4 (t)
Me(18)	1.11(s)	66.1(t)	(s) (s)	23.3 (<i>a</i>)	0.89 (s. 3 H)	23.6 (<i>a</i>)	23.2 (<i>a</i>)	64.1 (t)
$CH_2(19)$ or Me(19)	3.37, 3.49 (2d, J=11)	27.7(q)	0.89(s)	25.3 (q)	1.08(s)	34.0(q)	33.2 (q)	23.0(q)
Me(20)	1.04(s)	20.0(q)	1.24(s)	23.8 (q)	1.16(s)	21.5 (q)	19.0~(q)	18.1~(q)
^a) Measured in CD ₃ C 77.0 (d, C(5)); 61.2 (i	.D. ^b) Measured in (D ₆)DM , C(6)).	SO. °) ¹³ C-N	MR((D ₆)DMSO) I	Data of Glc	: 104.4 (<i>d</i> , C(1)); 73.8 (<i>d</i> , C(2)); 76.3 (d,	C(3)); 70.2 (d, C(4));

86

Helvetica Chimica Acta – Vol. 93 (2010)

Fig. 4. Key NOEs of compound 3

groups (δ (H) 0.89, 0.99, and 1.24). The ¹³C-NMR (DEPT) spectrum (*Table*), which manifested four quaternary C-atoms including an O-bearing one, five CH groups including two O-bearing ones, eight CH₂ groups including an O-bearing one, and three Me groups, was similar to that of compound **3**, except for C(2), C(3), and C(19). Based on the above evidences, the structure of compound **4** was also an *ent*-kaurane-type diterpenoid including four OH groups, and its molecular formula should be C₂₀H₃₄O₄. The ¹H- and ¹³C-NMR signals were assigned according to the ¹H, ¹H-COSY, HSQC, and HMBC experiments. The following long-range correlations in the HMBC spectrum were observed (*Fig. 5*): CH₂(17)/C(13), C(15), and C(16), H_β-C(3)/C(1), C(2), C(4), C(18), and C(19), Me(18)/C(3), C(4), C(5), and C(19), and Me(19)/C(3), C(4), C(5), and C(18). The correlation H-C(3)/H-C(2) in the ¹H, ¹H-COSY plot revealed that the four OH groups should be placed at C(2), C(3), C(16), and C(17). Moreover, the signal at δ (H) 3.52 (*d*, *J* = 9) of H-C(3) suggested that both H-C(2) and H-C(3) should be axial. Thus, the structure of compound **4** was established to be (2*β*,3*α*,16*α*)-*ent*-kaurane-2,3,16,17-tetrol, as shown in *Fig. 2*.

Fig. 5. Key correlations in the HMBC spectrum of compound 4

Compound **5**, obtained as colorless crystals and giving *quasi*molecular-ion peaks at m/z 354 ($[M + H_2O]^+$) and 318 ($[M - H_2O]^+$) in the APCI-MS, was deduced to have a molecular mass of 336 amu. In the ¹H-NMR spectrum (*Table*), it showed one Obearing CH₂ group (δ (H) 3.69 and 3.58 (2d, J = 11, each 1 H)), two CH₂ groups attached to one CO group (δ (H) 2.86 (d, J = 13, 1 H) and 2.20 (dd, J = 13, 2.0, 1 H); δ (H) 2.35 (d, J = 13, 1 H) and 2.02–2.10 (m, overlap, 1 H)), and three s Me groups (δ (H) 0.89, 1.08, and 1.16). The ¹³C-NMR (DEPT) spectrum (*Table*) indicated one C=O group, five quaternary C-atoms including two O-bearing ones, two CH groups, nine CH₂ groups including an O-bearing one, and three Me groups. According to this evidence, both compound **3** and **5** had the same molecular formula C₂₀H₃₀O₄, the same skeleton and groups including one C=O and three OH groups. The ¹H- and ¹³C-NMR signals of compound **5** were assigned based on the ¹H,¹H-COSY, HSQC, HMBC, and

NOESY experiments. In the HMBC spectrum, the following correlations were observed (*Fig.* 6): CH₂(17)/C(13), C(15), and C(16), Me(18)/C(3), C(4), C(5), and C(19), Me(19)/C(3), C(4), C(5), and C(18), H_a-C(1)/C(2), C(3), C(4), C(5), C(10), and C(20), H_a-C(3)/C(1), C(2), C(4), C(18), and C(19), and Me(20)/C(5) and C(9). Therefore, the C=O group should be placed at C(2) and the three OH groups at C(9), C(16), and C(17). Comparing the ¹³C-NMR of compound **5** with that of compound **3**, the *syn*- γ -effect exerted by the 9 β -OH group (*Fig.* 7) made C(1), C(5), C(7), and C(15) to shift to higher field in **5** ($\Delta \delta$ = -5.6, -8.3, -5.4, and -5.6, resp.), while C(12) and C(14) were shifted to slightly lower field ($\Delta \delta$: +1.7 and +1.3, resp.) thus confirming the relative configuration of these *ent*-kaurane diterpenoids. Thus, the structure of compound **5** was determined as (9 β ,16 α)-9,16,17-trihydroxy-*ent*-kauran-2-one as shown in *Fig.* 2.

Fig. 6. Key correlations in the HMBC spectrum of compound 5

Experimental Part

General. Column chromatography (CC): silica gel H (200–300 mesh; Qingdao Haiyang Chemical Co., Ltd.): TLC: normal-phase silica gel GF254 on plates; visualization under UV light (254 and 365 nm) and spraying with 0.5% vanillin/H₂SO₄ followed by heating at 110° for 5–10 min. M.p.: X-4 numeral melting-point instrument (*Beijing Tech Instrument Co., Ltd.*). Optical rotations: WZZ-2B polarimeter (cell length 1.0 dm, Shanghai Precision Instruments Co., Ltd.). UV Spectra: Hitachi-UV-3010 UV/VIS spectrophotometer; λ_{max} (log ε) in nm. IR Spectra (KBr discs): Bruker-Vector-33 spectrometer; in cm⁻¹. NMR (CD₃OD): Bruker-ARX-400 spectrometer; at 400 (¹H) and 100 MHz (¹³C); residual solvent peaks as internal standard; multiplicities of ¹³C by DEPT. APCI-MS: LCQ-DECA-XP liquid chromatography/ mass spectrometer (*Thermo Finnigan*, vaporizer temp. 450°, mobile phase MeCN/H₂O 1:1).

Plant Material. The leaves of *Rubus corchorifolius* L. f. were collected in July 2007 in Zhangjiajie, Hunan Province, P. R. China, and identified by associate professor *Bo-Ru Liao.* A voucher specimen was deposited with the key laboratory of Forest Products and Chemical Engineering at Ji-Shou University, Zhangjiajie, P. R. China.

Extraction and Isolation. The air-dried leaves of *Rubus corchorifolius* L. f. (3.5 kg) were crushed and extracted $(2 \times 35 \text{ l})$ with 80% EtOH, first for 0.5 h by treatment with ultrasonic wave, then at r.t. for 48 h. The EtOH extracts were concentrated under vacuum below 55° to give 2.5 l of a liquid residue which was

extracted successively with petroleum ether (b.p. $60-90^{\circ}$; $6 \times 2.51 \rightarrow 35$ g), CHCl₃ ($6 \times 2.51 \rightarrow 20$ g), AcOEt ($10 \times 2.51 \rightarrow 45$ g), and BuOH ($6 \times 2.51 \rightarrow 58.4$ g). The AcOEt extract was subjected to CC (SiO₂ *H*, hexane/AcOEt and AcOEt/MeOH of increasing polarity: *Fractions* 1–16. *Fr.* 6 (3.1 g) was then subjected to CC (SiO₂ *H*, CHCl₃/MeOH of increasing polarity: *Frs.* 6.1–6.17. Compounds **3** (15 mg) and **5** (25 mg) were separated by repeated recrystallization of *Fr.* 6.7 from AcOEt, while *Fr.* 6.8 yielded **4** (20 mg) by recrystallization from AcOEt/MeOH.

 $(4\alpha,16\alpha)$ -16,17,19-Trihydroxy-ent-kauran-2- $one (= (4\alpha,16\alpha)$ -16,17,19-Trihydroxykauran-2- one^2); **3**): Colorless granular crystals. M.p. 170–172°. $[\alpha]_D = +170.18 \ (c = 0.0006, MeOH)$. UV (MeOH): 224 (3.23). IR (KBr): 3540, 3440 (OH), 2943, 2921 (C–H), 1692 (C=O). NMR: *Table*. APCI-MS: 354 (100), 336, 318, 301, 283, 253.

 $(2\beta,3\alpha,16\alpha)$ -ent-*kaurane-2,3,16,17-tetrol* (= $(2\beta,3\alpha,16\alpha)$ -*Kauran-2,3,16,17-tetrol*²); **4**): Colorless needle crystals. M.p. 223–225°. [α]_D = +200 (c = 0.0004, MeOH). UV (MeOH): 207 (1.672). IR (KBr): 3180 (OH), 2925, 2857 (C–H). NMR: *Table*. APCI-MS: 356, 320, 303, 285 (100).

 $(9\beta,16\alpha)-9,16,17$ -Trihydroxy-ent-kauran-2-one (= $(9\beta,16\alpha)-9,16,17$ -Trihydroxykauran-2-one²); **5**): Colorless needle crystals. M.p. $169-170^{\circ}$. $[\alpha]_{\rm D} = -16.13$ (c = 0.003, MeOH). UV (MeOH): 217 (2.48), 278 (0.70). IR (KBr): 3540, 3330 (OH), 2943, 2926 (C-H), 1692 (C=O). NMR: Table. APCI-MS: 354, 336, 318 (100), 301, 283.

REFERENCES

- Institute of Botany, 'Higher Plants Illustrated Handbook of China', Chinese Science and Technology Press, Beijing, 1985, pp. 210-218.
- [2] Institute of Botany, 'Higher Plants Illustrated Handbook of China', Chinese Science and Technology Press, Beijing, 1985, p. 291.
- [3] S. Q. Wang, W. Q. Pan, Z. Y. Zhang, Chin. J. Nat. Med. 2002, 54, 42.
- [4] M. Zhang, Y. Cao, F. L. Du, Y. W. Ou , Y. Yuan, Acta Pharmacol. Sin. 2007, 42, 1155.
- [5] J.-Z. Wu, C. Morizane, A. Iida, S. Ueda, Z.-L. Zhou, M. Xu, M. Zhang, R.-M. Li, T. Fujita, *Chem. Pharm. Bull.* 1995, 43, 1448.
- [6] J. Xiong, Y. B. Ma, Y. L. Xu, Phytochemistry 1992, 31, 917.
- [7] G. Lui, R. Müller, P. Rüedi, Helv. Chim. Acta 2003, 86, 420.

Received April 14, 2009